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Abstract

The paper examines the equilibrium stability problem for a simple class of elastic space trusses in the shape of a reg-
ular pyramid. Joints located at the vertices of the base polygon are fixed while the joint at the apex is subjected to a
proportionally increasing load acting in either the vertical direction, in the horizontal plane, or along a generic oblique
direction. Exact closed-form solutions are derived for each load condition under the common hypotheses of linear
material law, small or moderate axial deformation in bars and large nodal displacements. Despite their seeming sim-
plicity, these mechanical systems exhibit a wide variety of post-critical responses, not exhausted by the classical snap-
ping and bifurcation phenomena. In addition to regular primary and secondary branches, the equilibrium paths may
include neutral branches, namely branches entirely composed of bifurcation or limit points. Besides their immediate
theoretical interest, these branches are particularly difficult to handle by the standard numerical procedures of non-lin-
ear analysis, so the given solutions may represent severe benchmark tests.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Space trusses; Elastic stability; Large displacement analysis; Equilibrium paths; Snap-through; Bifurcation; Neutral bra-
nches

1. Introduction

The shallow symmetric two-bar planar truss depicted in Fig. 1a, subjected to a vertical load at its top
joint, is no doubt the most popular example of a structural system where snap-through is the prevailing
form of instability. It is currently associated to the name of von Mises (1923, 1925), who first used this mod-
el to explore kinds of structural instability more general than Euler’s buckling of a single bar. However, it
would be unfair to relate this scheme to the snap-through phenomenon only. In fact, as clearly highlighted
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Fig. 1. The two-bar planar truss: (a) symmetric case, (b) general case.

by Pecknold et al. (1985), significant changes in the structural response can be obtained by introducing
some slight modifications to the static scheme or to the load pattern. Thus, for instance, if the height to
base ratio of the truss, H/B, is increased (and the hypothesis of symmetry is released), the two-bar planar
truss may exhibit a bifurcation instability. Moreover, if a linear elastic spring is placed along the symmetry
axis, then a strain-hardening behaviour emerges in the post-critical response, but, if a perturbing horizontal
load is added to the vertical one, then bifurcation points change into (more or less sharp) turning points.
The latter result is not surprising, if we consider that the horizontal load is to all intents an imperfection in
the sense of Koiter (1976). In this case, the symmetry of the model is lost, and its post-critical behaviour
becomes a combination of those exhibited by the perfect system when a vertical load or a horizontal
one acts separately. When a geometrical imperfection is considered, the equilibrium path is composed of
primary and secondary branches not connected to each other (for the closed-form solution of the asymmet-
ric two-bar truss of Fig. 1b, see Ligaro and Valvo, 1999). Finally, further modifications to the original
scheme were independently introduced by Crisfield (1991) and by Bazant and Cedolin (1991) to reproduce
more involved types of structural instabilities such as snap-back.

Unlike the two-dimensional case, when dealing with stability problems of space structures, the lack of
closed-form solutions, even in cases of particularly simple spatial systems, constitutes a serious gap, so that,
recourse to numerical procedures of non-linear analysis, notwithstanding their degree of sophistication, al-
ways remains accompanied by a halo of uncertainty.

This paper is concerned with the large displacement analysis of a class of elastic space trusses in the
shape of a regular pyramid. These structures represent the simplest three-dimensional generalisation of
the ‘perfect’ two-bar system mentioned above. Pyramidal trusses possess an immediate practical interest
since they are currently used in many present-day civil constructions, either as main parts or as minor ele-
ments. For instance, if the number n of the composing bars is 3, we find a common tripod-like structure
loaded on its upper joint. For n =4 and a large height to base ratio, the truss may represent the cap of
a mast or, if the load acts transversally, the extremity of a three-dimensional cantilever beam or of the
jib of a tower crane. Finally, for n =5 or n = 6 and a small height to base ratio, the truss may schematise
a molecule of a single-layer geodesic dome or of a generic-shaped reticulated shell.

The paper is organised as follows: in Section 2, a complete description of the mechanical model and the
system of loads is given. Assuming the latter to be conservative, the governing set of the non-linear equi-
librium equations is obtained by recourse to the principle of stationary total potential energy. Section 3
analyses the conditions for the existence of stable equilibrium configurations. Regions of the coordinate
space associated with stable equilibrium states are determined and conditions are discussed for which bifur-
cation and/or snapping instability may occur. Section 4 is dedicated to the search for those configurations
where the system is in equilibrium in absence of any applied load. As a result, kinematic paths and states of
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self-stress are determined at the same time. Knowledge of the above configurations is of great importance in
stability analysis, since they constitute points of obligatory passage for the equilibrium paths associated
with any reference load vector. In Section 5, the non-linear equilibrium problem is solved with reference
to three different loading conditions: first, we consider a proportional vertical load acting on the top joint,
then we analyse the case of a horizontal load and, finally, we consider a load acting along a generic oblique
direction. The analytical expressions of the equilibrium paths (primary and complementary branches) are
given in closed-form for all the aforementioned cases. Finally, some concluding remarks are given in
Section 6.

2. Formulation of the problem

Let us consider a space truss made of n > 3 identical elastic bars, which in the reference configuration C,
are placed along the lateral edges of a regular pyramid (Fig. 2a). Let H be the height of the pyramid, B the
radius of the circle I' which circumscribes the base polygon and L = \/H? + B? the length of the bars.

The apex joint is assumed to be free to move and subjected to a load /Zp, where A € (—oo, + c0) is a real
multiplier and p = [p,, p,, p-1"is a reference load vector (the superscript T denotes the transposition). Joints
located at the base vertices, identified in counter-clockwise order by the integers 1,2,...,n, are fixed at rest.
All joints behave as ideal frictionless hinges, so bars are subjected to axial forces only.

The bars are made of a homogenous and isotropic linearly elastic material. Let E denote the Young’s
modulus and A4 the cross-sectional area. Bars are identified by the same labels of the base joints to which
they are connected. We assume that the Euler load of each bar is so large that the bars never buckle.

In the three-dimensional space of the model, two interchangeable coordinate systems are introduced.
First, we consider the rectangular Cartesian coordinate system {O, x, y, z} with the origin O at the centre
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Fig. 2. The pyramidal truss: (a) reference configuration Cy, (b) current configuration C.
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of the base polygon, such that the z-axis contains the height of the pyramid and the apex has a positive
coordinate, and the x-axis passes through joint 1. Further, a cylindrical coordinate system {O, r, 0, z} is
introduced according to the transformation

[r,0,2]" = [\/x2 +)?,arctan(y/x),z]", (1)

where r € [0, +00), 0 € [0, 2n) and z € (—o0, +00). In what follows, we will call ‘horizontal’ those vectors
(forces, displacements and so on) which are parallel to the xy-plane, and ‘vertical’ those parallel to the
Z-axis.

With the above assumptions, the position vector of the apex joint in the reference configuration Cj is

X=[x,v,7]" =10,0,H]", (2)

while the position vectors of the base joints are

Xi - [Xi7 Yi,Zi]T - [B COS @,-,Bsin @i7O]T, l: 1,2, . .,I’l, (3)
where
i—1 .
0, =2n , i=1,2,...n 4)
n

is the angle between the position vector X; and the x-axis.
After deformation, the structure reaches a variable configuration C (Fig. 2b), in which the position vec-
tors of the base joints

x,=X;,, i=12,...,n (5)
remain unchanged, while the apex joint reaches the new position

x = [x,y,2]" = [rcosO,rsinf,z]" =X +u, (6)
where

u=[u,0,w]' =x—X=[rcos0,rsinf,z— H|" (7)

is the displacement vector. Each variable configuration is determined by the knowledge of the position of

the apex joint, so the coordinates r, 0 and z play the role of the Lagrangian coordinates of the system.
As measures of deformation and stress in the bars, we adopt the Green—Lagrange strain tensor and the

work-conjugate second Piola—Kirchhoff stress tensor, respectively. Thus, the axial components of strain are

P?—1?
81’ =- 9
217

i=1,2,...,n, (8)
where
P=(x-x) (x—x;)=r"—2Bcos(0 —0,) + B>+ 22, i=12,....n (9)
are the squares of the bar lengths in the configuration C, while the axial components of stress are
o;=FEg, i=12,...,n (10)
The strain energy of the system, W, is the sum of the contributions

1
WizzEALgl.z7 i=1,2,....n (11)
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relative to the n bars. By substituting (8) and (9) in (11), and carrying out the summation, we obtain
W (r,0,z) ZW EALZ 2= (P 42— H?) 4 2B = W(r,2), (12)

which, rather unexpectedly, turns out to be a function of the r and z coordinates only. As a consequence,
the geometric n-fold rotational symmetry of the initial configuration turns into an axial symmetry for the
structural problem. Thus, apart from possible asymmetries introduced by a non-axisymmetric applied load,
we expect the elastic response of the system to be independent of the coordinate 0.

As the load

j‘p - )“[vapypzi - /L[p cos 0 s Pr sin 0P7pz]T (13)
does not depend upon C, it is conservative, so we can define the load potential energy
V(ir,0,z) = —2p'u= —A(prcos+ prsin0 +p.z) + ip.H. (14)

By summing the contributions (12) and (14), we obtain the total potential energy of the system
(A r,0,z) = W(r,z) + V(2;r,0,z). (15)

The stationary conditions for IT with respect to the Lagrangian coordinates,

I nEA

fr= a@r = "2L3 r(r +2° —H* + B*) — Ap,cos(0 — 0,) =
101 .

fo :;E:},prsm((?—ep) =0, (16)
oIl nEA

= =50 2 +2 —H?) = Ip. =0

constitute the governing set of non-linear equations whose solutions are the equilibrium configurations of
the system for variable /. In the four-dimensional space spanned by 4 and by the Lagrangian coordinates, r,
0, and z, the solutions of (16) constitute a set of points, referred to as the equilibrium path of the system. The
geometrical properties of the path are strictly related to the mechanical response of the structure under the
assigned load condition (see, in particular, Sewell, 1966; Wempner, 1971).

3. Stability analysis
3.1. Neutral equilibrium surfaces

Before going to present the solutions of (16), we want to discuss the conditions for which the equilibrium
state of the system in the configuration C is stable. To this aim, the Hessian matrix K of IT needs to be eval-
uated in the considered configuration. As is well known, the equilibrium is stable if K is positive definite,
neutrally stable if K is positive semi-definite, and unstable if K is indefinite. In the first case, all eigenvalues
of the Hessian matrix are positive; in the second case, only one eigenvalue is zero while the remaining are
positive; finally, in the third case, at least one eigenvalue is negative.

On the equilibrium paths, configurations of neutrally stable equilibrium correspond to critical points,
which in turn may be either limit points, where the load parameter A is stationary, or bifurcation points,
where the tangent to the path is no longer unique due to the presence of one or more intersecting secondary
branches (single or multiple bifurcation) (see, for instance, Sewell, 1968; Thompson and Hunt, 1984). Since
the mechanical behaviour of the system differs greatly in each of the aforementioned situations, a deeper
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investigation about the nature of the criticality is essential. This task requires the eigenvectors of K to be
determined as well.
By further differentiation of (16) we obtain

S S S 32+ 22— H + B 0 2rz
EA
K= /o fo Jfo :r;? 0 P+ —-H +B 0 . (17)
fZV fz() fzz 2rz 0 7‘2+3227H2

The load potential energy V is linear with respect to the displacement u, so the Hessian matrix does not
depend on the applied load; consequently, if any region exists in the coordinate space associated to stable
equilibrium states, this will be independent of the load. From (17) we see that K does not depend on the
coordinate 0, so the regions of stable equilibrium are axisymmetric about the z-axis; moreover, since the
substitution of +z with —z does not alter the sign of (17), the stability regions are symmetric with respect
to the xy-plane as well.

By solving the characteristic equation, det(K — wl) = 0, where I is the identity matrix, the eigenvalues of
K are determined as

nEA B B*\’

o =75 2r2+222—H2+2—\/<r2—22+2> +4rz2 |, (18a)
EA

Wy = (P 42— H + B, (18b)
2L
EA B2 BZ 2 -

mz"z? 2r2+222—H2+7+\/<r2—22+7) +4rz2|. (18c)

By setting w; =0 in (18a), w, =0 in (18b) and w3 = 0 in (18c), respectively, we obtain the equations:

2H? B H> B\ 2B*?
— = - 2 - __
(Q) z=24z(r) == 3 > r +\/<3 2) + 3 (19a)
(@) z=ddzn(r)=+VH - B -1, (19b)
2 B o B\ 2B
_ _ _ 2 _
(Q3) z=24z(r) ==+ = "7 r \/< 3 2) + 3 (19¢)

which in the xyz-space represent three closed surfaces. As expected, these are surfaces of revolution about
the z-axis and symmetrical with respect to the xy-plane. The configurations where the apex joint of the pyr-
amid lies upon one of the above surfaces are of neutrally stable equilibrium; therefore, we will term Qy, Q,
and Q3 the neutral equilibrium surfaces. In passing, we note how the above surfaces depend uniquely upon
the characteristic lengths of the model.

The surface Q, separates the xyz-space into two parts. The inner part, denoted by €, contains the origin
O and represents the set of points where the eigenvalue w; assumes negative values, while the outer com-
plementary part, denoted by Q7 , is the locus of points where w; is strictly positive. By setting z =0 in (19a)
and solving for r, we obtain the value of the equatorial radius of Q, R; = H; conversely, by putting r = 0 in
(19a) and solving for z, we find the distance Z; = z;(0) between the origin O and the poles, P{ and P,
where the surface Q; intersects the positive and negative sides of the z-axis, respectively:
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Z, =

£1(0) = {H/\/§ if H < H,, (20)

VH?> - B> if H > H,.

In (20), Hy = 1/3/2B is a particular value of the height of the truss, whose physical meaning will soon be-
come evident. In both cases given by (20), R; > Z;, so the surface Q; appears to be ‘squeezed’ along the axis
of revolution, like an oblate spheroid.

The surfaces 2, and Q5 are real if and only if H > B, but for H = B both the surfaces shrink to the origin
O. The surface Q, is manifestly the sphere with centre at the origin O and radius R, = VH? — B> < Ry, s0
that the distance between its poles, P; and P;, and the origin is simply

Zz :Zz(O) :Rz. (21)

The equatorial radius of Q3 is Ry = /(H?> — B*)/3 = R,/v/3 < R, < R, while the distance between its
poles, P; and P;, and the origin is

Zs = 23(0) = VH? - B* if H < H,,
T H/\/3  if H> H,.

In both cases of (22), Rz < Z3, so the surface Q5 appears to be ‘pulled’ along its axis of revolution, like a
prolate spheroid. As before, we indicate with @, and 7, respectively, the regions of the coordinate space
where the eigenvalues w, and w3 assume negative values, and with Q; and Q; their complementary parts.

Fig. 3a and b show the meridians of the neutral equilibrium surfaces in the rz-plane for the values
B =100 cm, Hy = \/3/2B ~ 122.474 cm and two different values of the height H.

By keeping B fixed and changing H, the neutral equilibrium surfaces 2, and Q3 assume a continuous
sequence of different shapes, which in the extreme cases are very similar to an apple-shaped ellipsoid
and to a spindle-shaped ellipsoid, respectively. Fig. 4a—d show a cutaway view of the neutral equilibrium
surfaces for increasing values of H.

It is quite simple to verify that Q; C Q,. More precisely, if H < H, the surface Q5 is internally tangent to
the sphere Q, at the poles (P; = P and P, = P3), while if H > H, the two surfaces have no common
points. In the first case, two eigenvalues vanish simultaneously at the points of tangency; these will corre-
spond to two double critical points. Likewise, we may verify that Q; C Q. In particular, if H < H, the
sphere €, is entirely enclosed within the region €, while if H > H, the sphere €, is internally tangent
to surface Q; at the poles (P = Py and P; = P;); these, due to the simultaneous vanishing of two eigen-
values, will be related to two double critical points. When the height of the pyramid is H = Hy, the three
surfaces of neutral equilibrium, Q;, Q, and Q;, are tangent to each other at their poles (P] = P; = P; and
P = P, = P;), where they possess a common horizontal tangent plane; since here three eigenvalues vanish
simultaneously, the points of tangency will correspond to two triple critical points. All in all, based upon the
last observations, H, can be quite rightly defined the critical height of the pyramid.

In conclusion, the region of the xyz-space where all the eigenvalues assume positive values, Q7 is the
stability region, where equilibrium of the system is always stable. The points where the equilibrium path
will intersect the surface 2| will correspond to the first critical load, while the intersections of the path with
the surfaces ©, and Q5 will correspond to critical points of higher order. Consequently, w; is the minimum
eigenvalue which need to be monitored to prevent any possible instability phenomenon.

(22)

3.2. Eigenvectors corresponding to zero eigenvalues

In order to establish a distinction between bifurcation and limit points, the eigenvectors corresponding
to zero eigenvalues need to be determined. The eigenvector a = [ax, dxp, dx-]" paired to the eigenvalue wy,
given by each of (18a,b,c), for k =1,2,3, is obtained by solving the set of linear equations
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Fig. 3. The meridians of the neutral equilibrium surfaces: (a) H =110 cm < Hy, (b) H =140 cm > H,,.

(K — wkl)ak =0 (23)
together with the normality condition
air + aZO + alzcz = 1 (24)
If w; =0, the equation set (23) becomes

[3r7 + 22 (r) — H? + Blay, + 2rz(r)a. = 0,
[ +2(r) = H? + B’Jagg = 0, =
2rzi(Fag + [7’2 + 32/%(’") - Hz]akz =0,

where z(r) is given by (19a) or (19b) or, finally, (19¢). Thus, the three eigenvectors result
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Fig. 4. The neutral equilibrium surfaces: (a) H=90cm <B=100cm, (b) B<H=100cm < Hy, (c) H= Hy~ 122.474 cm, (d)
H =140 cm > H,.

Ir = 21"21 (}") aiz,
ayy = 07
(ar) 1 (26a)
a;; =
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ay = 07
(32) ary = 1, (26b)
a, = 07
2 20N 2
gy = 3O A
2rz3(r)
azy = Oa
(a3) 1 (26¢)
a3, = 5
- ¥+ 322(r) — H?
2rz3(r)

In the xyz-space, a, is a unit vector acting in the circumferential direction, that is, a, is always tangent to
the parallels of the sphere €2,. On the contrary, a; and a3 are unit vectors lying on the planes 8 = const. The
components of a; and a3 are functions of the radius r alone. If r = 0, the expressions (26a) and (26¢) are not
defined. In these cases, carrying out the limits for »r — 0, we obtain

air—g =0, airleg = =1,
apl,—o =0, if H < H,, or al,_o =0, if H> H,, (27a,b)
ar:l,_o =1, a:|,_o =0,

and
ayl,o =1, az|,_ =0,
asl,_o =0, if H<H,, or asl,_o =0, if H> H,. (28a,b)
az|,_y = 0, as|,_, = 1.

In the intermediate case, H = H,, the three eigenvalues vanish simultaneously at » = 0, so that any triplet
of mutually orthogonal unit vectors may be assumed as the eigenvectors.

Egs. (26a) and (26¢) are also undefined for » = R; and r = R3, respectively. Carrying out the limits for
r — Ry and r — Rj, we find the expressions

a17'|r:R1 = 07 a3”|r:R3 = 1’
aw‘r:Rl = 0’ and a39|r:R3 = O’ (293, b)
alz‘r:Rl = 1’ a3z|r:R3 = 0

Fig. 5 shows a plot of the eigenvectors a; and a; in the rz-plane, together with the meridians of the cor-
responding neutral equilibrium surfaces. The remaining eigenvector a, is not shown because it is perpendic-
ular to the representation plane. The same numerical values of the previous figures were used.

3.3. Scalar products and post-critical behaviour

When a single eigenvalue, say wy, vanishes, then a distinct critical point has been reached along the equi-
librium path (Thompson and Hunt, 1984; Kouhia and Mikkola, 1989); however, in order to decide what
kind of instability will actually take place, the scalar product ¥ = p'a,, between the reference load vector
p and the corresponding eigenvector ay, needs to be evaluated. In fact, if V;, # 0, the load parameter A is
locally stationary: the critical point is a limit point and loss of stability occurs by snap-through. Instead, if
Vi =0, the tangent to the path is no longer unique: the critical point is a bifurcation point and instability
manifests itself as buckling.
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Fig. 5. Eigenvectors corresponding to zero eigenvalues: (a) H =110 cm < H,, (b) H =140 cm < H,,.

For the structural problem under consideration, the scalar products relative to the three eigenvalues
result

Vi=p'a = paycos(0 - 0,) + p.a, (30a)
Vy=pra; = —p,sin(0 — 0,), (30b)
V3 =p'a; = p,as cos(0 — 0,) + p.as.. (30c)

In particular, since w; is the minimum eigenvalue, the first scalar product (30a) is the one to be evaluated
to decide what kind of instability is associated to the first critical load. More generally, as previously no-
ticed, there are some points of the xyz-space where two or three eigenvalues may vanish simultaneously.
These correspond to compound critical points (Kouhia and Mikkola, 1999). The post-critical behaviour
of the structure in these points becomes more involved: both forms of instability may coexist and interact.
Accordingly, all the above scalar products need to be considered.

4. Self-equilibrated load-free configurations

In this brief section, we search for those configurations of the pyramidal truss where an equilibrium state
may take place in absence of applied loads, irrespective of the state of stress in the bars. The knowledge of
these configurations is of great importance in stability analysis, since they constitute points of obligatory
passage for the equilibrium paths. In the coordinate space, these load-free equilibrium configurations
may correspond either to isolated points or even to curves, the latter representing finite mechanisms
(Kumar and Pellegrino, 2000; Tarnai, 2003).

By putting 2 =0 in (15), the total potential energy IT of the system reduces to the strain energy func-
tion W; therefore, to decide about the quality of the equilibrium, namely stable or not, it is sufficient
again to examine the sign of the Hessian matrix K of II, here still given by (17), and the sign of its
eigenvalues.
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The load-free configurations can immediately be determined by solving the equation set (16), where we
let A=0. Thus, we find four solutions:

r=20, r=0,
(31a,b)
z=~H, z=—-H,
:0 frnd 2— 2:
{r , {r VH? — B’ =R,, (le.d)
Z:07 z=0

whose mechanical meaning is made clear by recalling the definition of the neutral equilibrium surfaces.

In the xyz-space, these solutions represent three isolated points and a closed curve (Fig. 6). In particular,
solutions (31a) and (31b) correspond to the reference configuration, Cy, and to its symmetric, —Cy, relative
to the xy-plane, respectively. Both points belong to the stability region Q. At these configurations, the to-
tal potential energy IT attains a local minimum, so the equilibrium is stable, but, since W = 0, the bars are
stress-free. Solution (31c) represents the origin O of the coordinate system, which belongs to the region €.
At O, II attains a local maximum, so the equilibrium is unstable, but, since W >0, now the bars are
stressed. Finally, solution (31d) represents the circle I'> of the xy-plane with its centre at O and radius
R,, namely the equatorial circle of the neutral equilibrium surface »; this circle is composed of real points
if and only if H > B. All points of this circle are saddle points for IT; moreover, since W > 0, the bars are
stressed. These configurations are no doubt globally unstable, but, at a deeper investigation, one can easily
verify that, if each degree of freedom could be activated individually, then the equilibrium would be stable
with respect to the r-coordinate, unstable with respect to z, and neutral with respect to 6. Finally, it is an
easy task to recognise how these load-free equilibrium configurations correspond to cases where the pyra-
mid as a whole is flattened in the xy-plane, while the apex joint runs along I', in the absence of external
loads.

100 Z

-100 100

100,

Fig. 6. Self-equilibrated load-free configurations.
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5. Equilibrium paths

In this section, we solve the set of the equilibrium equations (16) for three relevant loading conditions.
To better understand the mechanical behaviour of the structure in each case, we give a graphical represen-
tation of the obtained solutions. Strictly speaking, the equilibrium paths should be plotted in the four-
dimensional space spanned by the load multiplier, 4, and the Lagrangian coordinates, r, , and z. However,
we consider appropriate to give also the plots of the paths in the three-dimensional space of x, y, z, where
the curves are immediately identified with the trajectories of the apex joint. For a better understanding, the
pyramidal truss in its reference configuration will be reproduced in the following figures as well.

5.1. Vertical load

The first load condition is characterised by
p,=0 and p, #0. (32a,b)

Since the load does not break the rotational symmetry of the system, we expect the solution to be inde-
pendent of the angle 6. Actually, the second equation of (16) turns out to be identically satisfied, while 0
disappears from the remaining equations. The solution of the equilibrium equations consists of the two
following groups of expressions

i%plani:lz(zsz), i:_;plznffBzza

r=0, or r=vVH - B -2, (33a,b)
0 = undef ., 0 €10,2n),

z € (—00, +00), ze |[-VH — B’ VH* - B].

Eq. (33a) define the primary branch of the path, which in the xyz-space is plotted as a straight line coin-
cident with the z-axis. Eq. (33b) represent a sphere perfectly fitting in the neutral equilibrium surface (5.
Any curve of this sphere is a feasible sequence of equilibrated configurations. However, considering the
direction of the applied load, we may distinguish, for each value of 0, a secondary branch coincident with
a meridian and, for each value of z, a tertiary branch represented by a parallel. Therefore, the surface Q,
contains an infinite number of secondary branches (the meridians), and an infinite number of tertiary
branches (the parallels).

In Fig. 7 several projections and views of the equilibrium path are given for the following numerical val-
ues: n =06, B=100cm, H=130cm, EA = 20000 N, p. = —100 N. The continuous curve represents the pri-
mary branch, while the dashed curve is the secondary one. We also notice that the surface (33b), which is a
sphere in the xyz-space (Fig. 7a—c), appears as an ellipse when plotted in the rz/i-space (Fig. 7d-f).

Provided that H > B, the primary branch intersects the three neutral equilibrium surfaces at their poles.
Since four of these points are in pairs coincident, we obtain four critical points in all, that is two simple limit
points, L; and L,:

B 1 1 nEA , , 1 1 nEA _,
AR W il
r=>0, r=0, (34a,b)
0 = undef ., 0 = undef .,
_H _H
Z—ﬁ’ z——7§
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Fig. 7. Equilibrium path of the pyramidal truss subjected to a vertical load: (a) projection on the xz-plane, (b) projection on the xy-
plane, (c) view in the xyz-space, (d) view in the rz/J-space, (e) projection on the zA-plane, (f) projection on the ri-plane.
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and two double bifurcation points, By and B;:

2p. L 2p. L
= 07 = 07 (3521, b)
0 = undef., 0 = undef.,
z=VH* - B, z=—VH?* - B.

When the primary branch is travelled starting from the reference configuration, Cy, the limit point precedes
the bifurcation if H < H,, while it follows if H > H,. If H = H,, these critical points coincide at a triple critical
point, namely we obtain a hill-top multiple branching point (Thompson and Hunt, 1984). Finally, we observe
the interesting feature that the positions in xyz-space of the above critical points depend only on the values of
the characteristic lengths B and H, neither on the load nor on the elastic properties of the bars.

Most numerical path-tracing procedures would encounter serious difficulties in finding the tangent vec-
tors to the secondary branches at the bifurcation points, as well as in attempting to trace any curve lying on
the sphere, which is made up completely of bifurcation points.

5.2. Horizontal load

The second loading condition is characterised by
p, 70 and p =0. (36a,b)
Now the applied load breaks the rotational symmetry of the system, so the solution is expected to

depend on the angle 6. Actually, the complete solution of the equilibrium equation (16) is given by the
following four groups of expressions

G Y LnEA s s P e
2p, I} 2p L*
r=vVH? -2, or { r=vVH* -2, or (37a,b)
0=0, 0=0,+n,
z € [—H,H], z € [-H,H],
i:%plrnlli:lr(rz—Hz—FBz), X;]inf:lr(rz—Hz—FBz),
r € [0,400), or r € [0, +00), (37¢,d)
0=0, 0=0,+m,
z=0 z=0,

In xyz-space, the four parts of the solution (37) lie in the vertical plane containing the z-axis and the
direction of the reference load vector. In particular, (37a,b) represent a circle with its centre at the origin
O and radius H, which constitutes the primary branch of the equilibrium path; instead, (37c,d) represent
a straight line of the xy-plane, which constitutes the secondary branch. Both branches are always present,
regardless of the height of the truss. In addition, if H > B, a tertiary branch, represented by the circle I,
given by (31d), completes the equilibrium path; the remaining load-free equilibrium configurations (31a,b,c)
are already included in solution (37). Fig. 8 shows several projections and views of the equilibrium path
obtained for the same numerical values considered before, except for the load which is now p, = 150 N,
with 0, = 75°. Again, the continuous curve represents the primary branch, the dashed curve is the second-
ary one, and the dotted curve is the tertiary branch.
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Fig. 8. Equilibrium path of the pyramidal truss subjected to a horizontal load: (a) projection on the xz-plane, (b) projection on the xy-
plane, (c) view in the xyz-space, (d) view in the rz/J-space, (e) projection on the zA-plane, (f) projection on the ri-plane.
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Critical points are detected at the intersections between the path and the neutral equilibrium surfaces. In
particular, the primary branch intersects the surface 2;, at two bifurcation points, B; and By:

1 1 nEA

1 1 nEA
J=- "y j=—- gy
2p, I’ 2p, I’
}":H, }”:H, (383.,]3)
0=0,, 0="0,+n,
z=0, z=0,

where it meets the secondary branch; moreover, if H > B, the secondary branch also intersects the surface
Q, at two further bifurcation points, B, and Bj:

/1:0, /1:0a
r=VH* - B, r=vVH - B,
(39a,b)
9:9177 9:0p+n?
z=0, z=0,

where it meets the tertiary branch; finally, the secondary branch intersects the surface 25 at two limit points,
Ly and L,:

1 1 nEA 1 1 nEA

et HZ*B2 3/2’ - - = Hszz 3/2,
Wi I ) Win D\ )
r=\/(H*~B)/3, r=\/(H*~B*)/3, (40a, b)
9:0177 0:9;7“‘7'5,
z=0, z=0.

The tertiary branch belongs entirely to the surface of neutral equilibrium ©,, so it is totally composed of
critical points. Considering that ¥, # 0, from (30b), these should be classified as limit points. Actually, / is
stationary along this branch since it is zero thoroughly.

5.3. Oblique load

Finally, we consider the general loading condition

p,#0 and p. #0. (41a,b)
To discuss this case, we introduce the ratio
P
n== 42
o (42)

between the vertical and the radial components of the reference load vector, p. Thus, when |u| < 1 we have
the case of a horizontal load with a small disturbing vertical load; vice versa, when |1/u| < 1, this load con-
dition represents the case of a vertical load with a small disturbing radial load.

Due to the breakage of the axial symmetry, the solution is again expected to be dependent on the angle 0.
Actually, the equilibrium equation (16) lead to the following solution
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Fig. 9. Equilibrium path of the pyramidal truss subjected to an oblique load: (a) projection on the xz-plane, (b) projection on the xy-
plane, (c) view in the xyz-space, (d) view in the rz/-space, (e) projection on the zA-plane, (f) projection on the ri-plane.
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re [07+OO)7 or (43a)
0=10,,

z =roots [z — wrz> — (H? — 1)z + pur(H* — B* — )],

r €10, +00), (43b)
0=0,+m,

z =roots [ + wz* — (H* — r*)z — ur(H* — B> — 1?)],

where ‘roots’ denotes the zeroes of the cubical polynomial in parentheses.

In xyz-space, (43a) and (43b) represent the primary branch of the equilibrium path, a unique curve lying
in the vertical plane containing the z-axis and the direction of the reference load vector. The two expressions
that compose the solution correspond to the two arcs of the curve lying in the half-planes 0 = 0, and
0 =0, + =, respectively, which are opposite with respect to the origin O. The path passes through the
load-free equilibrium configurations (31a,b,c). Furthermore, if H > B, the equilibrium path is completed
by a secondary branch given by the circle I',. Some projections and views of the equilibrium path are plotted
in Fig. 9, using the same numerical values considered before. The load is p, =10 N, p. = —100 N, with
0, = 75°. The continuous curve represents the primary branch, while the dashed curve is the secondary one.

As in the previous cases, critical points are found at the intersections between the path and the neutral
equilibrium surfaces. After some elementary algebra, we arrive at the following bi-quartic equation

P+ b3r® + byr* + by + by =0, (44)
where
(- B)HS
Sty
. (2 + 2H® — 44 + 1)H'B + 21 H B — 9B
A2 +1)° 7 (45)
. 3 A~ 40122 + VIPE + 908
42 +1)° ’
b= — 10(22 + DH? — (3312 + 1)B?
32 + 1) ,

whose solutions furnish the r-coordinates of the requested critical points.

By discarding the physically meaningless imaginary solutions, we find that the primary branch intersects
each of the neutral equilibrium surfaces in two points, thus giving rise to six critical points in all. The pri-
mary branch intersects the surface 2, at the limit points L; and L,, the surface 2, at the bifurcation points
By and B», and, finally, the surface Q5 at the limit points L, and L.

6. Conclusions

The equilibrium stability problem for a wide class of elastic space trusses in the shape of a regular
pyramid was posed. By assuming the joints to behave as ideal hinges and using the common hypotheses
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of large nodal displacements, small or moderate deformation in bars and linear elastic material behaviour, a
simple analytical model was formulated. Since these structures constitute the simplest three-dimensional
generalisation of the planar von Mises truss, the aim of the analysis was that of verifying if a similar rich-
ness of post-critical responses could be observed also for the space model. The governing set of non-linear
equilibrium equations was obtained by recourse to the principle of stationary total potential energy. The
study of the conditions for stable equilibrium states led to the definition of three surfaces such that, when
the top joint lies on them, the truss is in a state of neutral equilibrium. Regions of the coordinate space
associated to stable equilibrium states were determined and the expressions of the eigenvectors associated
to zero eigenvalues were derived, so the conditions for which bifurcation and/or snapping instability occur
could be discussed. Furthermore, the configurations of the system where a state of equilibrium may take
place in the absence of applied loads were analysed. Knowledge of the above configurations assumes a great
importance in stability analysis, since they constitute points of obligatory passage for the equilibrium paths,
irrespective of the reference load vector. The non-linear equilibrium problem was solved with reference to
three different loading conditions. First, we considered a proportional vertical load acting on the top joint;
then we analysed the case of a horizontal load; finally, we considered a load acting along a generic oblique
direction. In each case, the presence of single or multiple critical points along the primary path, or along a
complementary branch, was clearly identified; a deeper investigation was necessary to define the nature of
each critical point and to establish the order they follow along the path. Complementary branches were also
detected, where present.

Just as suspected, the solutions obtained confirm the great variety of the possible post-critical responses
of the examined class of space trusses. Besides the well-known cases of primary and secondary branches,
variously intersecting each other, very interesting cases of neutral equilibrium branches came out. The nat-
ure of these curves, entirely composed of critical points, was revealed. In particular, in the case of a vertical
load, we found secondary branches made up entirely of bifurcation points, which together with the tertiary
branches were able to generate a surface. Analogously, in the remaining two loading cases, we determined a
complementary branch made up of limit points, where the load was identically zero. In our opinion, these
branches result particularly hard to detect and trace by the standard numerical procedures of non-linear
analysis, for which the given solutions may represent severe benchmark tests.
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